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INTRODUCTION
Coronaviruses (CoVs) cause disorders in both the respiratory 
tract and the digestive system in humans and animals.1 During 
an epidemic in Wuhan, China at the end of 2019, the new CoV 
strain was identified and named 2019-nCoV. In a very short 
time, this newly emerging virus spread to almost all countries 
and the disease is officially named as Coronavirus Disease-2019 
(COVID-19) by World Health Organization (WHO).2 According 
to WHO’s COVID-19 Weekly Epidemiological Update Report 
released on May 11, 2021, the number of confirmed cases 
reached 157,362,408 including 3,277,834 deaths in the world 
as of May 9, 2021.3

Currently, there are several vaccines for COVID-19, but no 
antiviral drugs are available for specific treatment of COVID-19. 
However, some antiviral drugs such as lopinavir, ritonavir, 
remdesivir, and nelfinavir have been using to prevent further 
complications and organ damage caused by COVID-19.4 Among 
all these drugs, nelfinavir, which has been used in clinics, was 
found as the most potential inhibitor drug against COVID-19 
main protease (Mpro) based on its docking score according to 
the docking studies conducted by Xu et al.5 In docking studies, 
Mpro is used as a potential drug target to combat 2019-CoV.6-8

Secondary metabolites obtained from medicinal plants and 
their semi-synthetic derivatives have been widely used in new 
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ABSTRACT

Objectives: Coronaviruses (CoVs) cause infections that affect the respiratory tract, liver, central nervous, and the digestive systems in humans and 
animals. This study focused on the main protease (Mpro) in CoVs (PDB ID: 6LU7) that is used as a potential drug target to combat 2019-CoV. In this 
study, a total of 35 secondary metabolites from medical plants was selected and docked into the active site of 6LU7 by molecular docking studies 
to find a potential inhibitory compound that may be used to inhibit Coronavirus Disease-2019 (COVID-19) infection pathway.
Materials and Methods: The chemical structures of the ligands were obtained from the Drug Bank (https://www.drugbank.ca/). AutoDockTools 
(ADT ver. 1.5.6) was used for molecular docking studies. The docking results were evaluated using BIOVIA Discovery Studio Visualizer and PyMOL 
(ver. 2.3.3, Schrodinger, LLC).
Results: Pycnamine, tetrahydrocannabinol, oleuropein, quercetin, primulic acid, kaempferol, dicannabidiol, lobelin, colchicine, piperidine, 
medicagenic acid, and narcotine is found to be potential inhibitors of the COVID-19 Mpro. Among these compounds, pycnamine, which was evaluated 
against COVID-19 for the first time, showed a high affinity to the COVID-19 Mpro compared with other seconder metabolites and reference drugs.
Conclusion: Our results obtained from docking studies suggest that pycnamine should be examined in vitro to combat 2019-CoV. Moreover, 
pycnamine might be a promising lead compound for anti-CoV drugs.
Key words: COVID-19, molecular docking, pycnamine, seconder metabolites
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drug development. Therefore, the use of secondary metabolites 
purified from medicinal plants in drug development against 
severe acute respiratory syndrome (SARS)-CoV becomes 
important.9 There are many studies reporting the antiviral 
effects of many compounds with alkaloid,10-12 flavonoid,13,14 

monoterpene,15-19 sesquiterpene lactone,20,21 saponoside,22,23 and 
aryl alkene24,25

 
structures.

In this study, the potential innhibitory effects of alkaloids 
(atropine, caffeine, castanospermine, codeine, ephedroxane, 
hygrine, cuscohygrine, colchicine, lobeline, tussilagine, 
punicalagin, papaverine, pycnamine, piperidine, scopolamine, 
morphine, narcotine, pelletierine, ricinine), cannabinoids 
(cannabidiol and tetrahydrocannabinol), monoterpenes (citral 
A, thymol, oleuropein, and harpagoside), sesquiterpene lactone, 
e.g. artemisinin, saponins (primulic acid and medicagenic acid), 
aryl alkene (aromatic ketone), e.g. gingerol, and flavonoids 
(quercetin and kaempferol) were investigated on 2019-CoV Pro 

via molecular docking studies. We hope that the findings of this 
study will contribute to drug research to combat COVID-19 and 
direct the researchers working in this field to further designs.

MATERIALS AND METHODS
Experimental in silico part
The 2019-CoV Mpro (PDB ID: 6LU7) structure was obtained 
from The Protein Data Bank (PDB, https://www.rcsb.org/). The 
pdb file of the 6LU7 protein was prepared using chain A and 
transferred to AutoDockTools (ADT ver. 1.5.6). Water molecules 
of the structures were removed and only polar hydrogen and 
Kollman charges were added to the proteins. Finally, the pdbqt 
files of the proteins were saved.26

Chemical structures of the ligands were obtained from the Drug 
Bank (https://www.drugbank.ca/). The ligands unavailable in 
the Drug Bank were drawn in ChemDraw (Professional, version 
19.0.1.28), passed to ChemDraw 3D (professional, version 
19.0.1.28) and minimized. Torsion of the ligands was examined 
and then the files of the ligands were saved as pdbqt format by 
AutodockTools (ADT ver. 1.5.6).

The active site of the 6LU7 was defined using BIOVIA 
Discovery Studio Visualizer (v20.1.0.19295). AutoDockTools 
(ADT ver. 1.5.6) was used for molecular docking studies. 
Lamarckian genetic algorithm with local search was used as a 
search engine, with 10 runs. The active site of the protein was 
defined by a grid box of 60 x 60 x 60 points. Ten conformers 
of the ligands were considered to evaluate the docking results. 
Finally, the conformer with the lowest binding free energy was 
evaluated by BIOVIA Discovery Studio Visualizer and PyMOL 
(ver. 2.3.3, Schrodinger, LLC).26 

Statistical analysis
No statistical analysis was used in this study.

RESULTS
CoVs cause infections that affect the respiratory tract, liver, 
central nervous and the digestive systems in humans and 

animals.27 This study focused on the Mpro in CoVs (PDB ID: 
6LU7) that is used as a potential drug target to combat 2019-
CoV. 6LU7 has been structured in PDB and has been publicly 
available since early February, 2020. To date, this Mpro (6LU7) 
has been studied by different groups to find potential inhibitors 
that can stop this enzyme activity and, thus, the replication of 
CoVs.8,27,28

Nelfinavir, lopinavir, indinavir, and ritonaviprotease inhibitory 
drugs, of which ritonavir and lopinavir is proposed for treating 
SARS and MERS.29 In an in vitro study by Yamamoto et al.29, 
nelfinavir was reported to strongly inhibit the replication of 
SARS-CoV in Vero E6 cells.30 However, in an in silico study by 
Xu et al.5, nelfinavir was identified as the most potent inhibitor 
against COVID-19 with a binding free energy score. In our 
study, nelfinavir, lopinavir, indinavir, and ritonavir were used 
as standard drugs for comparison.

In this study, 35 secondary metabolites from medical plants 
were selected and docked into the active site of 6LU7. Docking 
studies were performed by AutoDockTools (ADT ver. 1.5.6). 
Table 1 shows the binding free energy scores of all selected 
molecules. The native ligand for 6LU7 is n-[(5-methylisoxazol-
3-yl) carbonyl]alanyl-l-valyl-n~1~-(1r,2z)-4-(benzyloxy)-4-oxo-
1-[[(3r)-2-oxopyrrolidin-3-yl] methyl]but-2-enyl)-l-leucinamide. 
According to the results presented in Table 1, the binding 
free energy scores of the compounds were between -11.30 
kcal/mol and -4.13 kcal/mol. We investigated pycnamine, 
tetrahydrocannabinol, oleuropein, quercetin, primulic acid, 
kaempferol, cannabidiol, lobeline, colchicine, piperidine, 
medicagenic acid, and narcotine as potential inhibitors of the 
COVID-19 Mpro because to the binding free energy scores of 
-11.30, -9.10, -9.06, -8.94, -8.94, -8.70, -8.52, -8.30, -8.28, -7.74, 
-7.71, and -7.60 kcal/mol, respectively.

Analysis of docking results and interactions with six of these 
compounds are presented in Tables 2 and 3. Table 2 shows the 
analysis of molecular docking results (binding energy/Gibbs 
Energy, ligand efficiency, inhibition constant, intermolecular 
energy, and Van der Waals-H Bond desolvation energy) for 
the compounds with binding energies less than -7.60 kcal/mol, 
which is similar to the binding free energy of ritonavir.

Table 3 shows 2D and 3D visualizations of interactions between 
6LU7 and the compounds presented in Table 2. According to 
Table 3, which shows interactions between compounds and 
6LU7, nelfinavir forms H-bonds with the amino acids Gly143, 
His163, Thr190, Gln189 of 6LU7. Lopinavir forms H-bonds with 
the amino acids His41, Cys145, Gln189, and Glu166. Indinavir 
realizes H-bonds with the amino acid, i.e. Asn142, while 
ritonavir, the latest standard drug, forms H-bonds with the amino 
acids His164 and Glu166. When the interactions of the seconder 
metabolites in Table 3 are evaluated, the following results are 
seen: pycnamine forms H-bond with the amino acid, i.e. Glu166. 
Tetracannabinol forms H-bonds with the amino acids Glu166, 
Cys145. Oleuropein realizes H-bonds with the 6LU7 amino 
acids, e.g.  His41, Thr26, Gly143, Glu166, and Thr190. Quercetin 
realizes H-bonds with 6LU7 amino acids, e.g. Glu166, Thr190, 
and His164.
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Table 1. Binding free energy scores of the compounds
Compounds Binding free energy (kcal/mol) Compounds Binding free energy (kcal/mol)

Pycnamine -11.30 Harpagoside -6.82

Tetrahydrocannabinol -9.10 Atropine -6.70

Oleuropein -9.06 Punicalagin -6.63

Quercetin -8.94 Couscohygrin -6.41

Primulic acid -8.94 Gingerol -6.27

Kaempferol -8.70 Ephedroxan -5.96

Cannabidiol -8.52 Tussulagin -5.91

Lobeline -8.30 Castanospermine -5.90

Colchicine -8.28 Pelletierin -5.30

Piperidine -7.74 Citral-A -4.98

Medicagenic acid -7.71 Thymol -4.95

Narcotine -7.60 Caffeine -4.64

Butylscopolamine -7.42 Hygrin -4.55

Hyoscyamine -7.39 Ricinin -4.51

Reticuline -7.29 Ivermektin -4.13

Papaverine -7.16 Native ligand -7.96

Codeine -7.07 Nelfinavir* -10.70

Artemisinin -7.03 Lopinavir* -8.95

Scopolamine -6.97 Indinavir* -8.73

Morphine -6.88 Ritonavir* -7.81

*Nelfinavir, lopinavir, indinavir, and ritonavir are HIV protease inhibitor drugs

Table 2. Molecular docking results analysis of compounds with low binding energy scores and the drugs used in clinic

Compounds
Binding energy 
(kcal/mol)

Ligand efficiency Inhibition constant Intermolecular energy
Van der Waals-H Bond
desolvation energy

Pycnamine -11.30 -0.25 5.21 nM -12.20 -11.85

Tetrahydrocannabinol -9.10 -0.40 214.2 nM -10.59 -10.58

Oleuropein -9.06 -0.25 229.87 nM -13.23 -12.96

Quercetin -8.94 -0.41 277.84 nM -9.24 -9.13

Primulic acid -8.94 -0.12 279.96 nM -14.01 -13.70

Kaempferol -8.70 -0.41 422.9 nM -8.99 -8.88

Cannabidiol -8.52 -0.37 570.21 nM -10.01 -9.97

Lobeline -8.30 -0.33 821.52 nM -10.09 -9.98

Colchicine -8.28 -0.29 -856.99 nM -9.77 -9.66

Piperidine -7.74 -0.37 2.11 µM -8.64 -8.58

Medicagenic acid -7.71 -0.21 2.21 µM -9.50 -9.66

Narcotine -7.60 -0.25 2.69 µM -8.79 -8.42

Nelfinavir -10.70 -0.27 14.45 nM -12.78 -12.72

Lopinavir -8.95 -0.19 275.32 nM -13.72 -13.55

Indinavir -8.73 -0.19 400.34 nM -12.90 -12.33

Ritonavir -7.81 -0.16 1.9 µM -13.47 -13.39
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Table 3. Two-dimensional and three-dimesnsional interaction diagrams for several compounds

No Compound
2D representation of
compounds-6LU7 interactions

3D representation of
compounds-6LU7 interactions

1 Pycnamine

2 Tetrahydrocannabinol

3 Oleuropein

4 Quercetin
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5 Primulic acid

6 Kaempferol

7 Cannabidiol

8 Lobeline
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9 Colchicine

10 Piperidine

11 Medicagenic acid

12 Narcotine
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13 Nelfinavir

14 Lopinavir

15 Indinavir

16 Ritonavir
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Primulic acid forms H-bonds with the amino acids, e.g. Ser46, 
Ser144, Glu166, Gln189, Asn142, Cys145, and Leu141. Kaempferol 
forms H-bonds with the 6LU7 amino acids, e.g. Tyr54, Glu166, 
and Gln192. Dicannabidiol realizes H-bond with the 6LU7 amino 
acid, i.e. Glu166. Lobelin realizes H-bonds with the amino acids, 
e.g. Gly143 and Glu166. Colchicine realizes H-bonds with the 
amino acids, e.g.  Gly143, Thr190, Gln189, and Gln192. Piperidine 
forms H-bonds with the amino acids, e.g. Gly143 and Asn142. 
Medicagenic acid forms H- bonds with the amino acids, e.g. 
Thr26, Cys145, Glu166, and His164. Narcotine realizes H- bonds 
with the 6LU7 amino acids, e.g. Cys145 and Glu169. The results 
presented in Table 3 suggest that the Mpro Glu166 plays a crucial 
role in drug interactions. Besides, the other amino acids, e.g. 
Asn142, Gln189, Cys145, and Thr26 are also predicted to play 
roles in drug interactions, as reported in previous studies.8,27

According to the results in Tables 1 and 2, the most impressive 
compound of our study is pycnamine with a score of -11.30 kcal/
mol, which is higher than that of nelfinavir. When the results 
in Table 2 are evaluated, it is seen that pycnamine has a 
predicted inhibition constant value (5.21 nM) approximately 
3 times lower than that of nelfinavir (14.45 nM). According to 
pycnamine-6LU7 complex presented in Table 3, hydroxy moiety 
of pycnamine forms a hydrogen bond with the side chain of 
Glu166. Additionally, pycnamine forms π-cation, π-sulfur, 
π-sigma, and several hydrophobic interactions with the active 
site of 6LU7, as shown in Table 3.

DISCUSSION
Pycnamine is an alkaloid found in some species of 
Menispermaceae (Triclisia patens Oliv., T. dictyophylla 
Diels, Pycnarrhena manillensis Vidal, P. ozantha Diels) and 
Ranunculaceae families (Thalictrum cultratum Wall., Isopyrum 
thalictroides L.).31-36 Pycnamine was reported to be a potential 
antimalarial, antiplasmodial, antiamoebic, and antimicrobial in 
previous studies.36-40 It was evaluated against COVID-19 for the 
first time in this study.

Tetrahydrocannabinol, which has the second lowest binding 
free energy score (-9.10 kcal/mol) in this study, purified from 
Cannabis sativa L. was reported to inhibit macrophage extrinsic 
antiherpesvirus activity.41

Oleuropein, a secoiridoid monoterpene and the main component 
of Olea europaea L., is a potential inhibitor of the COVID-19 Mpro 

due to it is binding free energy score of -9.06 kcal/mol. It has 
antiviral activity against mononucleosis herpes, hepatitis, 
rota, bovine, parvo, HIV, leukemia, respiratory syncytial, 
parainfluenza-3, and salmonid rhabdoviruses.42-46 In hepatitis B 
virus infected ducks, oleuropein reduced the virus entering the 
bloodstream.47

Quercetin, a flavonoid, is found abundantly in fruits and 
vegetables including onions, broccoli, buckwheat, peppers, 
Brassica species, apples, grapes, berries, tea, and wine as well 
as many nuts, seeds, barks, flowers, leaves, and spices.48

Quercetin also demonstrated a dose-dependent antiviral 
activity against poliovirus type 1, Herpes simplex virus (HSV-

1, HSV-2), and respiratory syncytial virus, influenza virus 
strain, parainfluenza virus type-3, sindbis virus, rhinovirus, 
echovirus (types-7, -11, -12, and -19), coxsackievirus (A21 and 
B1), poliovirus (type-1 Sabin) and grouper iridovirus in cell 
cultures.49-53 Early in vivo studies showed that oral treatment with 
quercetin-protected mice from lethal Mengo virus.54 In mice 
infected with rhinovirus, quercetin treatment decreased viral 
replication and attenuates virus- induced airway cholinergic 
hyperresponsiveness.55

Kaempferol is another flavonoid derivative found in most edible 
plants such as tea, fruits, and vegetables consisting of Allium 
cepa L., Camellia sinensis (L.) Kuntze, Citrus paradisi Macfad., 
Fragaria vesca L., Lactuca sativa L., and in medicinal plants 
such as Tilia tomentosa Moench., Aloe vera L., Crocus sativus 
L., Vitis vinifera L., Ginkgo biloba L., Hypericum perforatum L., 
Phyllanthus acidus L., Ribes nigrum L., Rosmarinus officinalis 
L., Hippophae rhamnoides L., and Sambucus nigra L.56 Antiviral 
activity of kaempferol on the influenza viruses (H1N1 and 
H9N2), HIV-1, flavivirus, two RNA viruses (murine norovirus 
and feline calicivirus), and human cytomegalovirus were 
mentioned.14,48,51,57,58

Primulic acid is a saponin found in some species of Primulaceae 
[Primula officinalis L., P. elatior (L.) Hill, P. veris L.] and Poaceae 
(Panicum repens L.),59-63 and was reported to have antiviral 
activity by Helal and Melzig.58

Finally, cannabidiol, the potential inhibitor of COVID-19 Mpro, 
purified from the C. sativa L.,64,65 and was reported to show high 
efficacy against viral hepatitis in previous studies.64

CONCLUSION
At currently, there is no antiviral drug for specific treatment of 
COVID-19, which is still a threat to global health. Mpro was used 
as a potential drug target to combat 2019-CoV. In this study, 
we evaluated several secondary metabolites obtained from 
medicinal plants against COVID-19 Mpro by molecular docking 
studies to identify a potential inhibitory compound that may be 
used to inhibit COVID-19 infection pathway. According to the 
results, pycnamine, tetrahydrocannabinol, oleuropein, quercetin, 
primulic acid, kaempferol, cannabidiol, lobeline, colchicine, 
piperidine, medicagenic acid, and narcotine are found to be 
potential inhibitors of COVID-19 Mpro. Among these compounds, 
pycnamine, which was evaluated against COVID-19 for the first 
time, showed high affinity to COVID-19 Mpro compared with other 
seconder metabolites and reference drugs. According to the 
results in this study, pycnamine has a binding free energy score 
of -11.30 kcal/mol, which is higher than nelfinavir used in clinics 
as the most potent inhibitor drug against COVID-19 Mpro. As a 
conclusion, this study has clearly shown that pycnamine may 
strongly inhibit COVID-19 Mpro. Our results obtained from the 
docking studies suggest that pycnamine should be examined 
in vitro to combat 2019-CoV. Moreover, pycnamine might be a 
promising lead compound for anti-CoV drugs.
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